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1 Introduction

The industrial need for new systems design mechanisms is clear. Moore’s Law
leads to an inevitable conclusion that our production capability will, sooner or
later, outstrip our design capability. With the advent of Systems on Chip (SoC),
this time has come. The EDA (Electronic Design Automation) Industry Council
created the SLDL committee to do just this: create a new mechanism for systems
design, that will allow a number of models, created in different design domains,
to share information and thus to create a unified systems design environment.

At the center of this has to be some means of describing the entire meaning,
or semantics, of a systems description that stretches over many engineering
domains, consists of hundreds or thousands of models in different languages and
created using different tools, and that uses a large variety of analysis mechanisms
and software to assure that the system meets its specification. Such a language
has a tremendous task, as it must not only represent this large description, but
must assist the user in conquering the complexity inherent in designing and
understanding such a system.

Government requirements of electronic systems are in many ways identical to
those of industry; however, in some ways they are unique. To ensure that the
needs of military systems were taken into account in any results coming out of
the SLDL committee, the Air Force decided to commit some funds to support
that development. In this way, the Air Force both assured the timely and
appropriate development of any solutions to the SLDL effort, and assured that




government requirements would be folded into the SLDL process.

This report will give a brief history of the SLDL project, a summary of the
benefits of the project, and a review of the current status of the Rosetta language
and tools for that language. The SLDL effort is ongoing, and the eventual road
for Rosetta is towards standardization, first through Accellera, and later through
the IEEE. The language is on track to attain that goal.

The reader should recall that during this project the last third of the funding
was canceled. Funding disruptions and cuts are a fact of life in government
contracts, but there cannot help but be some effect. We believe we have met
the goals of the original program to a large extent; however, the final result is
not as developed as we would have wished. We will address this further in the
lessons learned section below.

2 History of the SLDL Committee

The SLDL committee was formed as a technical committee of the EDA In-
dustry Council. Steve Schulz chaired the first meeting, and David Barton was
appointed chair after that meeting. A series of information gathering meetings
were organized in Silicon Valley and Europe. As a result of these meetings,
a number of subcommittees were formed. These subcommittees met to create
requirements; ‘and created a number of separate sets of requirements. These
were integrated. into the overall SLDL requirements document.

In addition to the requirements document, the committee gathered a number of
“representative examples” that represent the current state of the art in systems
design. These examples were surprisingly short, and established that systems
designers often create a design consisting of a block diagram, a number of pa-
rameters and not much else, handing the rest of the design task off to individual
members of the design team.

After creating the requirements and the representative examples, the SLDL
committee moved on to invite industry to present tools and current practices
that could be judged against the current set of examples. This resulted in the
definition of a number of “holes”, or requirements in the document that do not
seem to be covered by present industry tools.

As a result of these holes, the following committee structure was created:

e A Language Committee, whose task was to create a Systems Level De-
* sign Language (SLDL) specifically oriented to describing constraints and
parameters on systems and on system components.

e A Semantics committee, whose task was to create a set of conceptual
semantic definitions by which languages and systems tools could be com-
pared. This will allow the industry to compare “apples to apples” when
examining systems level design tools.




About this time, the SLDL committee found that the EDA Industrial Council
was not meeting the committee’s needs with respect to support and publicity.
The SLDL committee therefore moved under VHDL International (VI), which
was interested in moving its activities into the systems design arena. Under the
auspices of VI, the SLDL committee held a number of explanatory meetings
and continued technical work on the language development.

As the language design neared completion, VI decided to merge with a related
organization, Open Verilog International (OVI) to form Accellera. The SLDL
committee was, for a time, a technical committee under Accellera. Recently, in
a streamlining move, the SLDL committee has been eliminated and the Lan-
guage committee (now the Rosetta committee) and the Systems and Semantics
committee are now technical committees in their own right.

In its present form, the Rosetta and Systems and Semantics committees have
the full support of Accellera, which is a standardization group. This will allow
the Rosetta and Semantics efforts to continue, and to proceed directly to stan-
dardization, without the mechanism and long balloting periods of the IEEE.
When the standard progresses to a level of stability, it will be turned over to
the IEEE for a more broad constituency.

3 Scope

The scope of the SLDL committee is given»in' its mission statement. That
statement is:

“The mission of the SLDL committee is to support the creation and/or standard-
ization of a language or representation, or set of languages or representations,
that will enable engineers to describe single and multi-chip silicon-based em-
bedded systems to any desired degree of detail and that will allow engineers to
verify and/or validate those systems with appropriate tools and techniques. The
languages or representations will address systems under design and their operat-
ing environment, including software, mixed-signal, optical, and micro-electronic
mechanical characteristics.”

This mission statement is exceptionally broad. This broad scope sets the SLDL
effort apart from other systems design languages and efforts. The result is
that the committee, and the resulting languages and notations, must take an
extremely high level view of a system, and allow multiple domains and kinds of
engineering discipline into a single systems description. This is reflected in the
requirements for the language.

4 Requirements

One result of the SLDL committee work was a full set of requirements for the
language that would be produced. This language was called Rosetta, after the




Rosetta stone. The full requirefnents document may be found on the committee
web site, http://www.inmet.com/sldl, but we summarize the requirements here:

Scope: Rosetta must stretch across multiple application domains and disci-
plines: software, digital, analog, microwave/RF, mechanical (MEMs), op-
tical, and anything else that may be placed on a silicon chip. However,
nothing limits Rosetta to silicon.

Areas of Concern: Rosetta must specifically cover requirements and con-
straints on the system, as well as the system functionality (what the system
does). Of great concern are limits within which the system must operate
(environmental, power consumption, and so on).

Structure: Rosetta may have emphasis on other areas, but because systems
designers still work with block diagrams, structure is important within the
language. This includes how the system is put together and what it looks
like (schematics versus masks).

Requirements and Constraints: Rosetta must be extremely flexible in its
ability to specify requirements and constraints on the system. Specifically,
it must:

Specify partial descriptions, i.e. descriptions with only partial infor-
mation available. e .

e Specify and combine different  abstraction levels in a hierarchical de-
composition.

e Specify the values, or range, of parameters and their meaning. This
means the mathematics of such concepts as decibel (and many oth-
ers).

e Divide the “responsibility” for requirements between different com-
ponents and “views” of the system.

e Track the satisfaction of the requirement.

e Define metrics, record measurements, and relate them to constraints
and requirements.

Implementation Independence: Rosetta must be able to specify interfaces
between subsystems / components in different implementation' domains.
This means that subsystem interfaces must be free of any kind of domain
or implementation bias (except that imposed by the requirement itself).

Tools: A variety of tools must be able to operate on a Rosetta specification.
Such a variety means that Rosetta is not defined as VHDL or C is, as
an abstract implementation. Rosetta will be defined formally (see below).
The tools include at least (but are not limited to):

o The execution, or simulation, of the specification;




e The easy entry and manipulation of requirements and descriptions;

Knowledge bases of requirements;

The use of templates to fill in system requirements;

The ability to customize. the language for different implementation
domains (i.e., to use tools and notations from different domains).

" Interfaces There are a variety of concerns in the area of interfaces between
components and between views. These include:

e Users need the capability to map system level behavioral require-
ments to an implementable description (a description that could be
further analyzed and/or synthesized).

e Users need the capability to reflect system level constraint require-
ments into the implementable component level domain.

e The notation must provide the ability to pass information bottom
up.

o Users need the capability to map system level interface protocols into
known or new ways of communication at the interface level.

e We must have the capability to describe negotiation mechanisms be-
tween requirements and implementation. Implementors may fail to
meet their requirements, and when this happens we need a mech-
anism to figure out how to change requirements across the system
components so that the overall system meets its specification.

e We must have mechanisms to allow the user to protect proprietary
information in his models. '

¢ Rosetta must be able to express performance models for standard
products.

o The user must be able to establish a structured mapping between an
event at the systems level and an event, or a set of events, at the
component level.

o The user must be able to use various abstraction mechanisms in his
systems description, including black box specification and abstract
component model specification.

Formal Semantics: The formal semantic definition of Rosetta must have cer-
tain characteristics, including:
. ‘Sﬁﬁicient power;
. & Domain theories;
o Partial specifications;
e Composable specifications;
e Description characterizations;




o Extensibility;
¢ Different component notations;

e Views.

As can be seen, this is a formidable set of requirements, and it requires a
formidable language to respond to it. We include a brief description of the lan-
guage in the following section. More information may be found on the Rosetta
web site, http://www.sldl.org.

5 The Rosetta Language

In order to meet the requirements imposed on it by the SLDL committee,
Rosetta provides language support for defining and combining models from mul-
tiple domains using multiple domain semantics. In addition, Rosetta provides
support for modeling and analysis at levels of abstraction much higher than cur-
rent RTL based languages. Its semantics are formally defined and it is highly
extensible to support adaptation to emerging systems. We will look at the
various parts of the Rosetta language in this section.

5.1 Facets and Models

The Rosetta design methodology is based on the facet modeling concept. A
facet is a model of a component or system that provides information specific to
a domain of interest. To support heterogeneity in designs, each facet may use
a different domain model to provide domain specific vocabulary and semantics.
Facets are written to define various system aspects and are then assembled to
provide complete models of components, component aggregations and systems.

The definition of facets is achieved by directly defining model properties or
by combining previously defined facets. The former technique allows users to
choose a specification domain and specify properties that must hold in that
domain. The latter technique allows users to select several models and compose
a system model that consists of elements from each facet domain. The abstract
semantics of Rosetta is based upon this specification and combination of models
representing information from various design domains.

The syntax of Rosetta facets is designed to be familiar to engineers using existing
hardware description languages. Figure 1 shows an annotated specification of
the functional aspects of Schmidt trigger. Although the specification is quite
simple, it demonstrates many aspects of the facet specification concept.

Figure 1 - Rosetta specification of a Schmidt trigger.

As with traditional hardware description techniques, the trigger specification
opens by naming the model (schmidt) and defining a parameter list. A local
variable (s) is also defined to describe the facet state and the begin keyword
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facet schmidt (input: in real; output:: out bit) is
s:: bit;
begin continuous

tl: s? = if s = 0 then
if input > 0.7 then 1 else O
else '
if input < 0.4 then 0 else 1;
t2: output@t+10ns = s;
end schmidt;

Figure 1: Schmidt Trigger in Rosetta

opens the specification body. Following the begin keyword a domain (continu-
ous) for the specification is identified. Finally, two terms (t1 and t2) are defined .
that describe the behavior of the trigger. What makes the facet model differ-
ent than traditional HDL approaches is the identification of the domain. A
primarily difficulty in addressing the systems-on-chip problem is combining in
formation from multiple domains in a single design activity. The domain allows
this by allowing each inodel to reference a base set of concepts that support def-
inition of information in one particular design area. In the trigger specification,
the continuous domain provides the concepts of time, instantaneous change, or-
dering and state. Such concepts are important to continuous time modeling,
but may not be important when modeling power consumption or area. Such
models reference the constraints domain for defining such information.

The constraints domain provides the trigger specification with concepts of power,
heat dissipation, area and other non-functional design requirements. Unlike the
continuous domain, the constraints domain has no concept of state or time as
such concepts are not needed to describe current performance information.

To define a Schmidt trigger that satisfies both requirements sets, facet compo-
sition operators are provided. The user can use facet conjunction to define a
new Schmidt trigger facet that combines both specification models and asserts
that both must hold simultaneously. The declaration defines a new facet called
trigger and then asserts that the new facet is the conjunction of the trigger
requirements and performance models. Effectively, if a trigger is examined, it
can be viewed from either a functional or requirements perspective.

The Rosetta semantic model, i.e. defining and combining models, is important
as it reflects how systems engineers currently tackle their problems. The syntax
makes the semantics approachable, however the real contribution of Rosetta
is the semantics of designing and composing of component models. Through
the use of domains, users are provided with design vocabulary specific to their




domain of expertise rather than for¢ing the domain expert to work in a language
that is to general or otherwise unsuitable for their needs.

5.2 Systems and Heterogeneity

Heterogeneity in systems design not only emerges when defining multiple facets
of the same system, but also when describing systems structurally by combining
components. VHDL provides a structural definition capability that is mimicked
in the Rosetta semantics using a concept called re-labeling. When one facet
is included in another, an instance of that facet is created by re-labeling or
renaming the facet. Facet parameters are used as ports and channel data types
used to model communication between components. Systems level components
can be included and combined in an abstract specification. For example, an
analog to digital converter, modulator and amplifier are used in series to produce
a signal suitable for output to an antenna. Both a functional model and power
consumption model can be created. When composed, the two facets define a
systems level transmitter with a mechanism for calculating power consumption
from constituent components. Further, the semantics of facet inclusion maps
each power constraint facet to its associated functional facet. This allows power
constraints to be automatically mapped to corresponding functional constraints.

Like single components, Rosetta systems may include component models from
multiple design domains. Thus, Rosetta provides a mechanism for defining and
understanding systems comprised of components from analog, digital, mechan-
ical and optical domains in the same semantic framework. Furthermore, users
may define new specification domains to extend Rosetta to address new do-
mains and new modeling techniques for existing domains. Such a capability is
extremely important for the future of any potential systems design language.

5.3 Domain Interaction

Unfortunately, it is not sufficient to simply model domain specific information
in isolation. Cross domain interaction is the root cause of many systems failures
and difficult design problems. Systems level design requires understanding the
collective behavior of interconnected components from different design domains,
not simply the component level behaviors. Further, interaction also occurs be-
tween different models at the component level. Rosetta provides methodologies
for explicitly modeling and evaluating such interactions by defining how defini-
tions from individual domains affect each other.

There are two fundamental approaches for modeling interaction between design
domains in current design practice. The first is to choose a single domain for
representing all system models. Analysis tools from that domain are then used
to model entire systems. The problem with this approach is that the modeling
domain always favors one domain over all others. Designers or tool builders must
force information represented quite naturally in one domain into a potentially




less suitable representation. The net result is a model that cannot be analyzed
or a systems model that ignores certain domains.

The second approach to addressing model interaction is to rely on human ob-
servation to detect and analyze interactions between domains. Models are de-
veloped and maintained using separate representations and semantics. Human
designers are required to constantly observe and predict interactions. This ap-
proach is the most common in today’s environment and will most probably
always exist to some extent. However, Rosetta attempts to provide seman-
tic support for this activity by providing a mechanism for specifying and thus
analyzing domain interactions.

Rosetta provides the special domain and interaction semantic constructs for
defining domains and domain interactions respectively. The domain construct
simply provides a mechanism for identifying a facet as a domain model. Syntax
is provided in Rosetta to.allow users to identify and define domains quickly,
but their semantics is the same as a facet. When a facet includes a domain, it
extends that domain to represent a specific component or system model. When
facets using domains involved in an interaction specification are included in a
definition, the interaction specification is automatically included.

Like a domain, an interaction is also a facet. Using Rosetta’s reflection capa-
bilities, an interaction defines when specifications in one domain imply spec-
ifications in another. An interaction is a facet that accepts two domains as
parameters. - It then defines when information in one domain is pertinent in
another. : oo :

Rosetta currently provides semantics for mathematical specifications, state-
based (finite and infinite), discrete time, and continuous time specification.
Support for specification of testing requirements, constraints and mechanical
systems are currently being developed. Interactions are defined for many sup-
ported domains with others under development.

It is important to note that Rosetta’s semantics are defined independently from
its concrete syntax. Although a facet does have a defined syntactic represen-
tation, its semantics were defined initially and syntax developed to address us-
ability and readability issues. Other syntactic representations are not precluded
and are being encouraged.

6 Benefits of this Effort

This contract has had a great deal of influence on the Rosetta language and
effort. First and foremost, it has assured a sustained level of effort that resulted
in a stable language definition. Second, it allowed government requirements to
be included in the Rosetta development process.

In addition to the language development itself, this contract has allowed the
Rosetta community to build a base upon which tools can be constructed. This




base is the Rosetta parser and the Rosetta Object Model (ROM), a set of
Java classes that allow the user access to information in a Rosetta description
by semantic construct. These are already being used in commercial tools by
Edaptive, among others.

The money on this contract has been well spent by the government. Rosetta
now has a momentum that will, given time and care, carry it into industrial
acceptance, with full support for government needs. We anticipate a longer
period of acceptance for Rosetta than for VHDL (for example), but we also
anticipate that Rosetta will be another government success story.

7 Lessons Learned

The first lesson learned in this effort is that adjusting for the cancellation of
the final third of the contract is difficult, but not impossible. The final year
of the contract was to produce a prototype simulator for a subset of Rosetta,
and the lack of this tool has caused substantial problems in using Rosetta as a
mature solution. It has interfered with other projects (notably the use of Rosetta
on the Electronic Parts Obsolescence Initiative (EPOI), an AFRL MANTECH
sponsored initiative). Not only that, but again and again we are asked for a
demonstration, some sort of simulation that people can see and react to, so
that Rosetta seems a real alternative. We are unable provide that given the
reduction in scope and fundmg of the ongma.l project.

Fortunately, the can_cellatlon of the last third of the project has not been fatal.
Rosetta continues to proceed, and we hope to get more centers of Rosetta re-
search around the world. The University of Manchester provided a fellowship
for support of David Barton to get a center of research started there, and this
center, while struggling to get funding, is beginning to grow.

Another lesson is that making truly innovative changes in a field is hard. Com-
pared with Rosetta, VHDL was a baby step; RTL languages existed, and VHDL
used many of their concepts. Rosetta is a quantum step in expressibility (it has
to be, to meet its requirements), and convincing people that quantum steps are
needed is an extremely hard task. However, a part of this lesson is that such
quantum steps result in a hard core of dedicated people who can see the possi-
bility. The contract funds have allowed the Rosetta community to develop this
core. Rosetta will build and grow, and as people see its benefits it will become
a valuable tool in the systems design suite of techniques.

8 Conclusions and Future Work

Thanks to the support of the Air Force Laboratories, Rosetta is defined and
on its way. At least two commercial companies are actively developing Rosetta
tools, and more may be doing so less publicly. University centers of research are
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-also being established.

This work will continue. Announcements, including a textbook, are scheduled
for next years Design Automation Conference (DAC) in New Orleans. Most
of all, the Rosetta community is looking for a demonstrator: something that
will conclusively prove that Rosetta saves money and time to market. This has
been difficult, as it requires getting industrial support in a recession; however,
the effort is continuing.

However, enough has been done for a proof of concept: Rosetta meets its goals.
How much it will be taken up by industry remains to be seen, but the initial
work is done. As a result of this program, Rosetta exists and has a base set
of tools; however, this does not assure industrial support, and lacks some basic
components (a simulator and a graphical user interface (GUI)) that would help
assure that support. It is possible that Rosetta will become a victim of busi-
ness decisions that are not related to technical merit, but to ROI of additional
needed tool development and the defined base of tools for the language. Future
government support will increase the chances of success.
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